
 1

Dataton Watchout
NetLinx Control Module

As of 30 August 2010

Exhibit Control Engineering
102 Waterview Circle

Forest, VA 24551
(434) 385−4144

email: exhibit_control@yahoo.com
WEB: www.exhibit−control.net

 2

Technical Notes on Using ece’s WatchOut
Netlinx Module

OVERVIEW

The Netlinx module, ‘Watchout Module, ece, Rev0’, was developed
to control a PC running WatchOut software by Dataton. It is
designed to use channel activation rather than string parsing
and can perform most of the Watchout Display Cluster Protocol.
There are two master programs; one is for serial control via
RS232 and the other for TCPIP control over Ethernet. Use the
Master Program, 'WatchOut Test Master, RS232 Ver, ece, Rev 0',
for the RS232 control demo and the file, ‘WatchOut Test
wTCPIP,FGP,Rev0’, for Ethernet operations. Which should you use
for your application?

We generally prefer serial control via RS232 over Ethernet for
several reasons: first it has fewer failure nodes in the
communications hardware (just the two serial ports and one comm
line versus several wires (Cat5/6) connections, hubs/switches
(and their power supplies) and characteristics of the Network
and traffic). Secondly, TCPIP communications are more difficult
to trouble shoot than hardwired RS232. But, to fully use all of
Watchout’s features you really need two communications channels
(either one RS232 and one Ethernet port or two different
Ethernet ports). The specific feature that needs the two lines
of communication is what we call the “pyro” message feature.
This feature lets the Watchout program send out serial messages
tied to specific times in the show timeline. If you need this
capability, you can consider designing the entire system in the
Ethernet environment. However, we still suggest using RS232 for
control and Ethernet for pyro commands.

Here are some thoughts on using pyro commands in your system.
We have several media producers who like to have the flexibility
to move when theatrical (pyro or other) effects happen within
their Watchout program. The pyro command feature works well for
many show applications. However, it is not as precise as
something using SMPTE or MIDI timecode. Not even close. Where

 3

time code implies granularity down to the frame, this system’s
limit is closer to three or four frames. But more importantly,
it can only space events 0.30 seconds or greater apart.
Generally, the system will not miss any pyro commands, even if
they are very close together (approximately one tenth of a
second apart. So it will produce all events associated with
those cues, but it will space them out so they occur once every
three tenths of a second. This means if there were nine cues
very close together, there would be three seconds between when
the first one occurred and when the last one occurred.

So here are some considerations to help improve the system’s
performance. First, if there is a very precise cue you want to
happen virtually at the same time for every show, ensure there
are no other cues (or multiple cues) just prior to it. If you
want a number of different events to happen at the same time,
put all of the events in a single pyro cue. If you are just
using pyro commands to tell the Master when the show and /or the
attract section has ended, you can do this with CHANNEL_EVENTS.
However, if you are using numerous pyro cues that are very close
together in time, you will need more stringent management of
CHANNEL_EVENTS.

Finally, if your system has a lot of stacked pyro cues, you need
to manage the control of those events a little more tightly. To
do this you will need to create a buffer variable to capture all
of the pyro cue “channels” and then activate them each 0.3
seconds apart. If you do not normally create a “Mainline”
Timeline, you will need to create a repeating Timeline that
occurs every 0.3 seconds. If you already create a “Mainline”
Timeline, make sure its period is 300 (300 milliseconds). In
this Timeline you will need to check if there are any pulses in
the “buffer” and execute them. See Appendix A for sample code.

The main principle of operation for this module (like all
modules developed by ECE) is most operations are accomplished by
pulsing a specific channel on the virtual device (vdvSHOW_PC)
and getting feedback on the virtual feedback device
(vdvSHOW_FB). The module is the only thing that actually talks
to the real device (dvSHOW_PC). Many times, a variable must be
set just prior to the pulse action to take advantage of all of
Watchout’s capabilities.

 4

We should note here, that generally the module only interacts
with the Watchout Program, not with the PC (other than WOL). So
the shortcut to the WatchPointe program should be in the
“Windows” start-up menu so that it automatically starts up with
every boot process. This also means that any problems stemming
from the PC (like serial port locked-up or in-use, Watchpointe
is not running or is stopped and restarted in a session, or any
other “Windows” problems) may require that the PC be manually
powered down and a manual forcing the Module to a “PC no power
state” and starting the initiation process all over again to get
everything re-synchronized. This is just the hazard of using
“Windows” based platforms and only controlling the program
running on it. This problem will usually be indicated by the
kREADY channel not being on, even though everything else seems
OK.

The next section covers all the parameters passed from the
master program to the module.

PARAMETERS TO BE PASSED TO THE MODULE

DEV vdvSHOW_PC - The virtual Watchout PC

DEV dvSHOW_PC - The real device that talks to
 the PC (RS232 or TCPIP
 connection)

DEV vdvSHOW_FB - A virtual device for obtaining
 channel feedback.

DEV dvUTP - This is a device on the master
 (0:??:1) which will communicate
 the Wake On Lan (WOL) and
 through which the Pyro messages
 will be received. (Port 5000
 for WOL and an arbitrary port
 you select (not 3039) for the
 pyro messages).

 5

DEV dvTP - If you want to see the strings
 going and coming from the PC,
 this should be the touch panel
 where the variable text boxes
 are located (they are
 designated 1 & 2). Otherwise,
 define this as a dummy
 device number.

CHAR sCUE_NAME[20] - This variable holds the Named
 Cue you want to jump to and
 should be loaded just prior to
 pulsing the GO2CONTROL_CUE
 channel (7).

CHAR sSHOW_FILE[20] - This variable will hold the
 name of the show file you want
 to load and use, and should be
 loaded with the correct file
 just before pulsing the load
 channel (5).

INTEGER nPYRO_PORT - TCPIP port for Pyro messages
 (do not use 3039).

CHAR sUSER_DEFINED[20][20] - This variable holds an array of
 strings which are arbitrary
 (with the limit of 20 bytes).
 Have the producer of the
 Watchout show embed these
 strings, preceded with colons
 and terminated with carriage
 returns ($0D or 0X0D) in the
 Watchout timeline. When
 the string is fired out,
 Netlinx will pulse the
 corresponding channel. Simply

 write a channel-on event to do
 something when this happens.
 Common use is to put a cue at
 the end of the show, so that
 Netlinx knows when the show is
 finished.

 6

LONG lSHOW_TIME - Load this variable just before
 using the GO2TIME channel (6).
 This will be the time the

 Watchout show jumps to. The
 number is milleseconds.

CHAR sSMPTE_TIME[12] - This is one of two variables
 that should be set just prior
 to using the TIMECODE_ON
 channel (13). It is the offset
 for the time code in the
 following format:
 ‘HH:MM:SS.FFF’ where FFF is
 milliseconds.

CHAR sARN_PARAMETER[25] - General purpose parameter that
 can be used with SET_STRING,
 channel (12).

INTEGER nSEQ_NUMBER - Each Watchout Master PC in the
 Netlinx Master program should
 have a unique sequence number
 between the total number of
 WatchOuts minus one to 0 which
 should be the first one.

INTEGER nNUMBER_OF_PCS - The number of Watchout PCs that
 are in the synchronized show.

CHAR sIP_ADDRESS[15] - IP address of WatchOut PC.

INTEGER nMAC_ADDR[][6] - This is an integer array that
 holds all of the MAC addresses
 for all the display Watchout
 PCs for one specific
 synchronized show. NOTE:
 There needs to be a module
 instantiated for every Watchout
 show which is not necessarily
 one for every Watchout PC.

 7

INTEGER nTIME_CODE_MODE - This is the other variable that
 needs to be set just prior to
 using TIMECODE_ON channel (13).
 It should be set to one of the
 following:
 0 - SMPTE receiver off
 1 - auto detect format
 2 - EBU 25fps
 3 - SMPTE 29.97 NDF
 4 - SMPTE 29.97 DF
 5 - SMPTE 30 (“B&W”)

INTEGER nCONDITION - This variable needs to be set,
 just prior to load, channel
 (5), and ENABLE_LAYER, channel

 (8), whenever this feature is
 to be used. If the feature is
 not used, it should be zero.

INTEGER nFADE - Set this variable just before
 using the STANDBY_ON, channel
 (9), and STANDBY_OFF, channel
 (10) to lengthen the fade of
 these two actions. The default
 is zero.

Next we will look at all of the channel assignments used in this
module.

CHANNEL CONSTANTS

(* COMMANDS *)
kRUN = 1;
kHALT = 2;
kPING = 3;
kAUTHENTICATE = 4;
kLOAD = 5;
kGO2TIME = 6;
kGO2CONTROL_CUE = 7;
kSTANDBY_ON = 9;
kSTANDBY_OFF = 10;
kGET_STATUS = 11;

 8

kSET_STRING = 12;
kTIMECODE_ON = 13;
kTIMECODE_OFF = 14;
kENABLE_LAYER_COND = 15;

kON = 27;
kOFF = 28;
KPWR_APPLED = 29; // TURN ON TO SIGNIFY THE
 // PC HAS 120vac POWER AND
 // OFF WHEN IT DOESN’T.
(* STATUS *)
kREADY = 101;
kBUSY = 102;
kSTANDBY = 110;
kERROR = 111; // GENERAL ERROR
kSHOW_FILE_ERROR = 112; // FILE ERROR
kCONNECTED = 150;

(* USER DEFINED CHANNELS *)
KUSE_PYRO_SIGNALS = 200; // 0 – NOT USED; 1 - USE
kUSER_1 = 201; // THESE CHANNELS WILL PULSE
kUSER_2 = 202; // FOR 0.5 SEC EVERY TIME
kUSER_3 = 203; // THEIR PYRO MESSAGE IS
kUSER_4 = 204; // RECEIVED.
kUSER_5 = 205;
kUSER_6 = 206;
kUSER_7 = 207;
kUSER_8 = 208;
kUSER_9 = 209;
kUSER_10 = 210;
kUSER_11 = 211;
kUSER_12 = 212;
kUSER_13 = 213;
kUSER_14 = 214;
kUSER_15 = 215;
kUSER_16 = 216;
kUSER_17 = 217;
kUSER_18 = 218;
kUSER_19 = 219;
kUSER_20 = 220;
kCOM_MODE = 250; // OFF – RS232; ON – TCPIP

 9

KPYRO_PORT_CONNECTED = 251;
kINOP = 252;
kDEBUG = 254; // NEEDS TO BE ON TO GET
 // MESSAGES INTO TOUCH PANEL
 // TEXT BOXES.

NOTES ON CHANNEL PARTICULARS

Many of the channels’ functions are fairly intuitive, but some
are not. This section explains the peculiarities of those that
aren’t intuitive. The following channels perform the Watchout
function in their name and do not need a variable set before
initiating them: kRUN, kHALT (stop), kPING, kSTANDBY_ON (video
black on), kSTANDBY_OFF (video black off), kGET_STATUS and
kUSE_PYRO_SIGNALS. Although the kSTANDBY_?? channels do not
need a variable set, if you want to adjust the time it takes
them to go from one full state to the other you will need to set
the variable nFADE in milliseconds (i.e. 5000 is 5.0 seconds).
Turn the kUSE_PYRO_SIGNALS channel on if you want NetLinx to
look for these messages from the Watchout Program. Turning this
channel on will initiate communications on the pyro port.

The kAUTHENTICATE channel is only used with TCPIP control and
will be explained later. kLOAD is used to load a show which
must be done first after establishing communications, as none of
the other commands will work until there is a show loaded. The
show name should be twenty characters or less and does not
include its file extension “.watch”. You should allow at least
two seconds after a load command, maybe more if the files are
very large or there are many show files on the Watchout PC,
before you issue any of the operational commands.

The kGO2TIME and kGO2CONTROL_CUE are similar in function. They
both cause the WatchOut show to jump to a new location. The
kGO2TIME does not require anything embedded in the show; just
set the variable lSHOW_TIME in milliseconds (i.e. 5000 is equal
to 5.0 seconds) and pulse the channel and the video will move
directly to that time in the show. If the show is running, it
will continue to run from that point in the timeline. If the
show is halted, it will freeze on that frame. The
kGO2CONTROL_CUE is similar but it requires a cue name embedded
in the show. Set the variable sCUE_NAME to the correct string
and pulse the channel. It will jump the video to that spot in

 10

the timeline; if running, it will continue to run or if halted
it will freeze frame there.

To understand the kTIMECODE_ON and kTIMECODE_OFF review their
actions in the Watchout Manual. Their variables to set are
nTIME_CODE_MODE and sSMPTE_TIME.

In Watchout you can identify layers as conditional by giving
them a number greater than zero. Each conditional layer will
have a sequence number: 1,2,3,4…… Think of each conditional
layer as a bit in a digital word. Layer one is the first bit,
layer two the second bit, layer three the third bit, etc. So if
you wanted just conditional layer “one” only on, you would set
nCONDITION equal to 1 (zero would be for no conditional layers
on). If you wanted just layer “two” on, nCONDITION would be set
to 2. However, if you only wanted layer “three” on you would
set nCONDITION to 4. If you set it to 3, that would turn both
layers one and two on and no others. This feature is most often
used to turn closed captioning on and off on the fly while the
show is running.

Before we talk about kON and kOFF, we need to talk about
kPWR_APPLED. Neither the NetLinx Master nor the module knows
when the Watchout PC has power applied to it. The module is
written so that it can only do things incrementally as the state
of the PC progresses from no power applied, power applied, boot-
up, Windows boot-up and the Watchout Program is running. We use
this channel to let NetLinx and the Module know when there is
power applied to the PC. We could set this channel equal to a
relay that controls power to the PCs, or turn it on and off in
the program based on other information where we know the PCs
will have power applied to them. If the PCs are always powered
on (which is a fine solution) just set this channel on in
DEFINE_START and leave it on all of the time..

Once we know the PC has power and the kPWR_APPLED channel is on,
we can pulse the kON channel. This will cause the module to try
to do a WOL for all the MAC addresses in the array nMAC_ADDR.
This is a built in feature regardless if you are using TCPIP
communications or not. So if you are not using TCPIP and are
using some other method to start the PCs up (most likely have
their BIOS set so they boot up when power is applied to them),
we need to initiate that action before we pulse the channel kON.

 11

Once kON is pulsed, the module will wait 60 seconds before
allowing any other actions. When it is ready, the feedback
channel “kON” will be on. If you notice that your Watchout PCs
take longer than a one minute boot up into the WatchPointe
program (which is unlikely) ensure you Master program waits the
additional time before initiating further actions.

Once the system is up and operating (including connection and
authentication if require – discussed elsewhere) you can now use
the kOFF channel to gracefully power down the PC as long as the
system has established communications and WatchPointe is
running.

HOW TO INITIATE THE DEVICE AT SYSTEM POWER UP

1. Ensure all of these variables are instantiated in the
DEFINE_START section. The data presented here is from the
Demo master Programs:

sFILE_WFOCUS = "'Countdown59a'";
sCHANNEL_PROMPT[1] = "'10'";
sCHANNEL_PROMPT[2] = "'20'";
sCHANNEL_PROMPT[3] = "'30'";
sCHANNEL_PROMPT[4] = "'40'";
sCHANNEL_PROMPT[5] = "'50'";
sCHANNEL_PROMPT[6] = "'end'";
sWO_CUE = "'2'";
lWO_TIME = 5000;
sSMPTE_TIME = "'-1:00:00'";
sARB_PARAMETER = "";
nWO_NUMBER = 1;
nNUMBER_OF_PCS = 1;
sWO_IP_ADDRESS = "'192.168.1.111'";
nTIME_MODE_CODE = 3;
nENABLE_COND = 1;
nFADE_OUT = 5000;
nPYRO_MSG_PORT = 6000;
nMACADDRESS_ARRAY[1][1] = $00;
nMACADDRESS_ARRAY[1][2] = $30;
nMACADDRESS_ARRAY[1][3] = $1B;
nMACADDRESS_ARRAY[1][4] = $48;

 12

nMACADDRESS_ARRAY[1][5] = $8A;
nMACADDRESS_ARRAY[1][6] = $D1;
[vdvWATCHOUT_FB,kCOMM_MODE]= 0; // or 1

These variables will be passed to the module in the
DEFINE_MODULE section.

2. Wait until the WatchOut PC has booted up. It boots up
pretty quickly, but the module allows 60 seconds to be
safe. Then PULSE[vdvWATCHOUT,kON], which sends out the WOL
broadcast. If the Watchout PC and NetLinx are not
networked together, manually power up the Watchout PC.

3. When using RS232 serial control to activate the Display

Cluster Protocol, you must have a command file in the same
file folder as the Watchout executable file. (See page 185
& 186 of the atchout Manual.) Create it in Notepad and
save it as CMD.txt. You need three lines in the CMD.txt
file and it is case sensitive:

authenticate 1
serialPort true “COM3”
<empty line>

In addition, the CMD.txt file needs to be referenced in the
short cut to Watchpoint in the Start Up Folder. Example:
<drive and path>/WatchPoint.exe CMD.txt

4. When using TCPIP to activate the Display Cluster Protocol,

you must send an authentication command to the WatchOut PC
you want as a Master. To do this, wait until the Watchout
has booted-up which would normally be 60 seconds from
pulsing [vdvWATCHOUT,kON] at which time
[vdvWATCHOUT_FB,kON] should be equal to one. Then
PULSE[vdvWATCHOUT,kAUTHENTICATE].

 13

5. Then make sFILE_WFOCUS equal to the show file name you want

to run and PULSE[vdvWATCHOUT,kLOAD] two (2) seconds after
the authenticate. Then wait another two seconds (or more
depending on the size of the file) and
PULSE[vdvWATCHOUT,kRUN] action and stop with a
PULSE[vdvWATCHOUT,kHALT] action or use any of the other
show controls.

THE DEMONSTRATION PROGRAMS

With every licensed copy of the Watchout NetLinx Module, you
will get the module .tko file, a G3 touch panel file, two demo
Master files (one for RS232 and one for Ethernet), a sample
CMD.txt file for RS232 operations and a sample Watchout Show
which is basically a countdown from 60 seconds to zero. This
file has embedded cues, a conditional layer which is a green
rectangle behind the countdown display and pyro messages in it.

The Demo program uses touch panel button pushes to instigate all
control of the Watchout program. However, in a real show
control program you could also instigate actions based not only
on button pushes but also by CHANNEL_EVENTS, DATA_EVENTS and
TIMELINE_EVENTS. In the Demo program it was easier to explain
the mechanics using button pushes.

The Watchout show program needs to be loaded on the display
computer. This takes two computers with two Watchout licenses
to accomplish. Loading a show is not covered in this manual but
rather refer to the Watchout Manual. Ensure a short cut for the
Watchpointe program is loaded in Start Programs folder. And, if
you are trying the RS232 version, ensure the CMD.txt file is
loaded in the executable file folder and is part of the target
executable string in the Windows properties for the WatchPointe
program. See pages 185 and 186 in the Watchout manual.

First set one of the master programs (RS232 or TCPIP) as the
master in NetLinx Studio and load it into the Controller. Next
using TP Design 3 save the touch panel file as HTML and FTP it
to the Controller. In the HTML Conversion Options Window,
ensure that HTML type is NetLinx and the base address is 255.

 14

In a WEB browser, open the IP address of the Master which should
return a screen like Figure 1.

Figure 1.

Click on the File folder Watchout_Test and after a short time
you should get the touch panel splash page as seen in Figure 2.
To achieve this operation you will need Java loaded on your PC.

Figure 2.

 15

Click anywhere on this screen to get to the Main Menu as seen in
Figure 3.

Figure 3.

If there is no pop up page, press the button that says “Player
Control”.

During our testing of the module we discovered a flaw in the
Watchout PC’s WOL process. If power has been removed from the
PC or it was last shut down with the power button on the PC
case, the network card will not see the WOL string. So the very
first time the PC is used after the above conditions the WOL
will not work. We believe Dataton is going to correct this
issue, but we are not sure when. So the first time you use this
Demo we suggest you power the PC up with the PC power button and
then do a graceful power down using the “Windows” start menu.
Thus we should have the PC with 120vac power applied and in an
off condition after a graceful shut down.

 16

First thing we need to do is press the double wide “External
Power” button on the touch panel so it is green which tells the
Master that the PC has power. Next press the button that says
“PC OFF PRESS FOR ON”. Nothing will happen on the touch panel,
but if the IP address and MAC address data are correct in the
Master program, the Watchou PC should start to boot up. This
assumes the Watchout PC and the NetLinx master are networked
together. Sixty seconds later that button should turn green and
by that time the black Watchout logo screen should be on up on
the video. If you want to see the communications between the
Controller and the PC, press the “DEBUG” button to on.

The next steps are different depending if you are using RS232 or
TCPIP. In Ethernet Mode (TCPIP) once the PC is booted up to
Watchpointe we still do not have communications, so you must
click the “CONNECT” button which should cause immediate
connection if all IP addresses are correct and everything is on
the same network. On the other hand, if you are using RS232,
the “CONNECT” button will be highlighted the same time as the
“PC ON” button because the RS232 connection is always there.
Having said that, remember that any problem with the PC “comm”
port will not be detected by NetLinx.

Once the connect issue is correctly resolved, the next step is
also communication specific. If using TCPIP communications, we
must “authenticate” by clicking on that button on the touch
panel. For the RS232 mode we can skip this step because it is
taken care of in the CMD.txt file on the PC.

The last step is to load the program. The show name was hard
coded into the Master programs and does not have to be set.
But, in general for the purposes of our Demo, we suggest you
open a debug window and load all the variables you might want to
change in the monitor window. Then you can change them to
whatever you want just prior to a button push.

If you click on the touch panel “STATUS” button you will see a
screen similar to Figure 4 pop up.

 17

Figure 4.

In order for the program to work correctly the following LEDs on
this page should reflect the following states:

- ON LED - on green
- OFF LED - off red
- CONNECTED LED - on green
- READY LED - on green
- NO FILE ERROR - on green
- kERROR - off red
-

The other LEDs should indicate the state of the program: running
or stopped; standby (video blacok on or off); comm Mode; whether
pyro receive is on or off and, finally, display the number
representing the conditional layers that are on.

 18

Let’s go back to the “Player Control” menu.

Figure 3(Again). 1

If you have “DEBUG” turned on, all communications between the
NetLinx Master and the Watchout PC will be displayed. Clicking
the “RUN” and “STOP” buttons will cause the show to play or
pause based on the button. If you press the “GO TO TIME”
button, the show will go to the time hardcoded in the program
which is 5.0 seconds (5000 millisec). The video screen should
jump to approximately “55” in the countdown. You can change
this time in NetLinx Studio in debug watching the variable
lSHOW_TIME before pressing the button again to change the jump
time. Similarly, if you press the “GO TO CUE” it will jump the

 19

video to the hardcoded cue “2”. You can change the variable
sCUE_NAME to “1”, “3”, “4” or “5” to get this button to jumpt to
other embedded cues in the Watchout Show program.

If you press the “STANDBY ON” button, you will watch the video
fade from full up to full black in 5.0 seconds (5000
milliseconds) which is hard coded into the Master program. You
can change this fade time by changing the variable nFADE to some
other number. Conversely, pressing the “STANDBY OFF” button
will cause the reverse action fade up from black to full screen
in nFADE time.

Pressing the “TIME CODE ON” and “TIME CODE OFF” buttons will
cause that action to take place, but with no other equipment you
will not realize any change has taken place. See the Watchout
manual for additional information.

Pressing the “PING” and “STATUS” buttons will casue those
actions to occur. You can watch the results in the message text
windows, if “DEBUG” is on.

If you change the variable nCONDITION from one to zero in
NetLinx Studio and press the “CHANGE LAYER CONDITION” button,
you will see the green rectangle behind the countdown disappear
from the screen. Changing it back to one and hitting the button
will cause the green rectangle to reappear.

If the Watchout PC and the NetLinx master are networked
together, you can press the “PYRO Rx” button to on and see what
its affect is. Press the Main Menu button on the left labeled
“PYRO MONITOR” and you will see a screen similar to Figure 5.

 20

Figure 5.

Every time the NetLinx master receives a pyro message from the
Watchout show, you will see its corresponding LED blink and the
actual message in the Watchout Response window. The pyro
messages embedded in the Watchout show are: “’10’,$0D”;
“’20’,$0D”; “’30’,$0D”; “’40’,$0D”; “’50’,$0D”; and,
“’end’,$0D”.

From here on out, you need to develop a master program to do
what you want your show to do. Good luck from Exhibit Control
Engineering.

 21

APPENDIX A

POSITIVE CONTROL OF PYRO EVENTS

In Define Constants section add a LONG for the Mainline Timeline
(if you do not already have it):

(***)
(* CONSTANT DEFINITIONS GO BELOW *)
(***)
DEFINE_CONSTANT

/* GENERAL CONSTANTS */
CONSTANT LONG kMAINLINE_TL = 1;

In the Define Variables portion of the Master code include a
variable for the “buffer” and a variable for the period of
Mainline Timeline, if not already in your code. If it is in
your code, ensure it is set to 250 (250 milliseconds):

(***)
(* VARIABLE DEFINITIONS GO BELOW *)
(***)

VOLATILE CHAR sPYRO_HIT_BUFFER[20];
VOLATILE LONG lMAINLINE_PERIOD[1] = 250;

Build a function to process the pyro events one at a time:

(***)
(* SUBROUTINE/FUNCTION DEFINITIONS GO BELOW *)
(***)

DEFINE_FUNCTION PyroAction()
{
 STACK_VAR CHAR cWHICH_PYRO;
 STACK_VAR INTEGER nWHICH_PYRO;

 IF(LENGTH_STRING(sPYRO_HIT_BUFFER))
 {
 cWHICH_PYRO = GET_BUFFER_CHAR(sPYRO_HIT_BUFFER);

 IF([vdvWATCHOUT_PC_FB,kPYRO_DEBUG])
 {
 nWHICH_PYRO = cWHICH_PYRO;
 SEND_STRING 0,"'PYRO SHOW SEQUENCE = ‘,ITOA(nPYRO_SEQUENCE_PLACE)";
 SEND_STRING 0,"'PYRO HIT ON CHANNEL ',ITOA(nWHICH_PYRO)";
 }

 22

 SWITCH (cWHICH_PYRO)
 {
 CASE 1:
 {
 // SOME ACTION
 }
 CASE 2:
 {
 // SOME ACTION
 }
 CASE 3:
 {
 // SOME ACTION
 }
 CASE 4:
 {
 // SOME ACTION
 }
 CASE 5:
 {
 // SOME ACTION
 }
 CASE 6:
 {
 // SOME ACTION
 }
 CASE 7:
 {
 // SOME ACTION
 }
 CASE 8:
 {
 // SOME ACTION
 }
 CASE 9:
 {
 // SOME ACTION
 }
 CASE 10:
 {
 // SOME ACTION
 }
 CASE 11:
 {
 // SOME ACTION
 }
 CASE 12:
 {
 // SOME ACTION
 }
 CASE 13:
 {
 // SOME ACTION
 }
 CASE 14:
 {
 // SOME ACTION
 }

 23

 CASE 15:
 {
 // SOME ACTION
 }
 CASE 16:
 {
 // SOME ACTION
 }
 CASE 17:
 {
 // SOME ACTION
 }
 CASE 18:
 {
 // SOME ACTION
 }
 CASE 19:
 {
 // SOME ACTION
 }
 CASE 20:
 {
 // SOME ACTION
 }

 }
 }
}

In the Startup Section, start the Mainline Timeline, if not
already in your code:

(***)
(* STARTUP CODE GOES BELOW *)
(***)

WAIT 120
{
 TIMELINE_CREATE(kMAINLINE_TL,lMAINLINE_PERIOD,1,TIMELINE_ABSOLUTE,TIMELINE_REPEAT);
}

In the Events Section of the Code have CHANNEL_EVENTS for the
pyro channels:

///
//// WATCHOUT PYRO CHANNEL EVENTS ////
///
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,201]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,202]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,203]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,204]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,205]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,206]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,207]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,208]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,209]

 24

CHANNEL_EVENT[vdvWATCHOUT_PC_FB,210]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,211]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,212]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,213]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,214]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,215]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,216]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,217]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,218]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,219]
CHANNEL_EVENT[vdvWATCHOUT_PC_FB,220]
{
 ON:
 {
 STACK_VAR INTEGER nPYRO_MSG_NO;

 nPYRO_MSG_NO = CHANNEL.CHANNEL - 200;

 sPYRO_HIT_BUFFER = "sPYRO_HIT_BUFFER,nPYRO_MSG_NO";
 PyroAction();
 }
}

In the Events section of the code define your MainLine Timeline,
if you don’t already have one:

///
//// TIMELINE EVENTS ////
///

TIMELINE_EVENT[kMAINLINE_TL]
{
 IF(LENGTH_STRING(sPYRO_HIT_BUFFER))
 {
 PyroAction();
 }
}

